Sea level rise and groundwater Numerical modelling and risk-based decision making

Murihiku Regeneration Energy and Innovation Expo 23rd May 2023

Lee Chambers Groundwater modeller Hydrogeology and Geophysics

Talk outline

Groundwater – A hidden asset

Threats to our groundwater systems

TE TAI PARTIO ACTERPOR

New Zealand SeaRise platform – Updated projections for NZ

Groundwater, sea level rise and modelling uncertainty

Mapping New Zealand's groundwater resources

A hidden asset

The social, cultural, economic and environmental value of groundwater

Estimated 80% of annual river flow volume comes from groundwater

Critical for sustaining surface aquatic ecosystems and mahinga kai

Approx. **40%** of New Zealanders depend on groundwater for **drinking**

Irrigation from groundwater contributes an estimated **\$2B/year** to the economy

Groundwater may be more resilient than surface water (e.g., droughts)

Photo: M. Low, GNS

GNS Science

Groundwater vulnerability

What are the main stresses on our groundwater systems?

BBC Scale of 'nitrate timebomb' revealed

18/06/2022

③ 10 November 2017

By Roger Harrabin BBC environment analyst

Caley Callahan

Tough decisions as councillors look to protect south Dunedin from flooding

National model of groundwater flow Modelling across scales

National scale data:

- Consistent datasets
- Consistent boundary conditions

Simulate areas of interest Informed by national model

- Identify critical areas
- Ask specific questions

geo_class min: 3.000e+00, mean: 168.9547982161537, max: 1.910

ational MODFLOW 6

with SFR no MVR

Depth to Groundwater

Update information

Refine process representation

- Local processes
- History match (calibrate) to locally available data
- Extension to other areas

National scale models

- Consistent input
- National policy context
- Inform local models

Decision support tools:

- Models designed to answer specific management questions at the appropriate scale
- Scripted for consistent, repeatable, rapid model development

NZ Sea Rise Explore location specific sea level rise projections

GNS Science

Groundwater and sea level rise How might sea level rise affect our communities?

Simon Cox GNS Science

```
GNS Science
```

Decision-support modelling

Uncertainty in sea level driven groundwater hazard

Brioch Hemmings GNS Science

Scanning the subsurface How do we 'see' our groundwater systems?

Geophysics takes our subsurface knowledge from drillholes (a join the dots picture) into a 3D continuous image like an x-ray

Why we do what we do...

Use, value and protect our groundwater systems for future generations

Safeguard our annual river baseflows from groundwater

Protect groundwater dependent aquatic ecosystems

Sustain New Zealand's groundwater dependent freshwater supply

Reduce uncertainty and protect New Zealand's economy (**\$2B/year**)

Improve resilience to climate change (e.g., droughts)

Photo: M. Low, GNS

GNS Science

Questions? Some publications below

Hydrology and Earth System Sciences

★ > Frontiers in Earth Science > Hydrosphere > Research Topics > Rapid, Reproducible, and Robus..

🔂 ARTICLES & PREPRINTS 👻 SUBMISSION POLICIES 👻 PEER REVIEW 👻 EDITORIAL BOARD ABOUT 👻 EGU PUBLICATIONS 🖒

Research article | 🞯 🛈

Application of an improved global-scale groundwater model for water table estimation across New Zealand

Rogier Westerhoff 🖂, Paul White, and Gonzalo Miguez-Macho

13 Dec 2018

Journal of Hydrology: Regional Studies Volume 40, April 2022, 101053

Climate change and New Zealand's groundwater resources: A methodology to support adaptation

Frédérique M. Mourot 🝳 🖂 , Rogier S. Westerhoff, Paul A. White, Stewart G. Cameron

Rapid, Reproducible, and Robust Environmental Modeling for Decision Support: Worked Examples and Open-Source Software Tools

Chambers LA, Hemmings B, Cox SC, Moore C, Knowling MJ, Hayley K, Rekker J, Mourot FM, Glassey P and Levy R (2023), Quantifying uncertainty in the temporal disposition of groundwater inundation under sea level rise projections. Front. Earth Sci. 11:1111065. doi: 10.3389/feart.2023.1111065

Kitlasten W, Moore CR and Hemmings B (2022), Model structure and ensemble size: Implications for predictions of groundwater age. Front. Earth Sci. 10:972305. doi: 10.3389/feart.2022.972305